壹佰网|ERP100 - 企业信息化知识门户

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 2890|回复: 0

数据挖掘案例

[复制链接]
发表于 2008/10/9 16:39:20 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。如果您注册时有任何问题请联系客服QQ: 83569622  。

您需要 登录 才可以下载或查看,没有帐号?注册

x
Yahoo! 数据挖掘案例
作者:  2008-08-18 09:19:49
 Usama Fayyad博士是Yahoo!的首席数据官,KDnuggetsGregory对他进行了访谈。
Gregory Piatetsky-Shapiro:您可以介绍一些Yahoo!在数据挖掘方面的成功案例吗?
Usama FayyadYahoo!是第一家招募了首席数据官的公司,以验证数据对公司而言,的确是一笔真实而有战略意义的财富。我们的目标是通过提供以客户为中心的数据平台和洞察力服务,激励用户积极参与,对营销方案进行创新,从而为消费者和卖家带来价值。只用了很短的时间,我们就对Yahoo!的多项产品和服务带来了积极影响。抱歉的是,很多成果还不方便和大家分享,因为涉及到竞争优势和保密性方面的问题。
当然,我仍然很乐意介绍一些可以公开的案例。例如:
产品整合:一个例子就是你今天在Yahoo!电子邮箱上看到的,数据挖掘的可视结果。通过对用户使用行为的意外模式分析,我们发现在每次会话中,人们阅读邮件和阅读新闻的行为之间存在很强的相关关系。我们把这个发现传达给Yahoo! 电子邮箱产品小组,他们首先想到的就是验证这种关系的影响:在一组测试用户的邮箱首页上显示一个新闻模块,其中的新闻标题被醒目显示。
对于象电子邮箱这种产品,最头痛的问题就是如何获取新的轻量级用户,并推动他们的用量,使之变成重量级用户。如果你做到了,那么流失率就会显著下降。实际上,在我们的试验中,最弱的一组流失率下降了40%。于是Yahoo!立刻开发并完善了新闻模块,并嵌入Yahoo!电子邮箱的首页,到现在,上亿的消费者都可以看到并使用这种产品。我喜欢提及这个故事,因为它很好地说明了我们产品团队的及时反应能力,也证明了在用户使用行为数据中蕴含着很多很多极具价值的潜在模式。
即时通信:我们对雅虎通(Instant Messenger)的使用情况进行了分析,以了解激励用量的关键因素是什么。结果发现,最重要的因素是让用户扩大他们的好友列表,至少增加5个新的好友。据此Yahoo!精心设计了相应的营销活动,鼓励用户增加好友列表中的好友数,从而显著激励了雅虎通的用量。
Yahoo首页的搜索框:一个简单的例子就是我们发现,在Yahoo的首页上,把搜索框放在居中的位置(而不是以前的左侧)将提高用户的用量。这样一方面可以促进用户的积极使用,对Yahoo!来说也没有成本支出。这个结果的发现过程也很有趣,我们首先发现Netscape浏览器的用户比IE的用户更多地使用了搜索功能,进一步探查发现两个浏览器在视觉上的唯一区别就是:二者中的搜索框位置不同!搜索框在Netscape浏览器中是居中放置,而在 IE中则是靠近左侧。很不明显的差别,但却很重要。一般谁会想到呢?

1.什么是关联规则
  在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: "尿布与啤酒"的故事。
  在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
  按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
  数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|小黑屋|手机版|壹佰网 ERP100 ( 京ICP备19053597号-2 )

Copyright © 2005-2012 北京海之大网络技术有限责任公司 服务器托管由互联互通
手机:13911575376
网站技术点击发送消息给对方83569622   广告&合作 点击发送消息给对方27675401   点击发送消息给对方634043306   咨询及人才点击发送消息给对方138011526

GMT+8, 2025/11/29 00:12 , Processed in 0.014894 second(s), 14 queries , File On.

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表